Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
3.
J Med Virol ; 94(1): 388-392, 2022 01.
Article in English | MEDLINE | ID: covidwho-1366254

ABSTRACT

In the current COVID-19 pandemic, a better understanding of the relationship between merely binding and functionally neutralizing antibodies is necessary to characterize protective antiviral immunity following infection or vaccination. This study analyzes the level of correlation between the novel quantitative EUROIMMUN Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and a microneutralization assay. A panel of 123 plasma samples from a COVID-19 outbreak study population, preselected by semiquantitative anti-SARS-CoV-2 IgG testing, was used to assess the relationship between the novel quantitative ELISA (IgG) and a microneutralization assay. Binding IgG targeting the S1 antigen was detected in 106 (86.2%) samples using the QuantiVac ELISA, while 89 (72.4%) samples showed neutralizing antibody activity. Spearman's correlation analysis demonstrated a strong positive relationship between anti-S1 IgG levels and neutralizing antibody titers (rs = 0.819, p < 0.0001). High and low anti-S1 IgG levels were associated with a positive predictive value of 72.0% for high-titer neutralizing antibodies and a negative predictive value of 90.8% for low-titer neutralizing antibodies, respectively. These results substantiate the implementation of the QuantiVac ELISA to assess protective immunity following infection or vaccination.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/pathology , COVID-19 Serological Testing/methods , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Young Adult
4.
Nat Biotechnol ; 39(12): 1556-1562, 2021 12.
Article in English | MEDLINE | ID: covidwho-1287813

ABSTRACT

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.


Subject(s)
COVID-19 Testing/methods , COVID-19 , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL